Двигательная единица - что это? Двигательные единицы мышц Моторные единицы с быстрыми и медленными сокращениями

Регистрация и анализ биоэлектрической активности мышц возможны только на основе знаний и представлений об анатомической и функциональной организации работы мышц. Какие элементы мышцы являются генераторами электрических сигналов? Как организована их активация во времени и пространстве? Как элементы мышцы связаны с двигательными нейронами (мотонейронами) спинного мозга? Что является пусковым механизмом мышечной активности? Эти и другие вопросы возникают при первом знакомстве с ЭНМГ, различными электромиографическими сигналами.

Элементарной анатомической единицей мышцы является мышечное волокно , или мышечная клетка. В норме при активации мышцы (произвольной и непроизвольной) мышечные волокна активируются группами. Активировать одиночную мышечную клетку произвольно или при стимуляции нервных волокон не удается. Активация мышечных волокон группами обусловлена анатомо-функциональной связью каждого мотонейрона с несколькими мышечными волокнами. Такое объединение мотонейрона и группы мышечных клеток носит название двигательной единицы (ДЕ) и является анатомо-функциональной единицей нейромоторного аппарата. На рисунке 1 представлено схематичное изображение моторной единицы.

Рис. 1. Схема двигательной единицы мышцы

(По Л.О.Бадаляну, И.А.Скворцову, 1986).

А, Б, В – мотонейроны передних рогов спинного мозга,

1, 2, 3, 4, 5 – мышечные волокна и соответствующие им потенциалы,

I – потенциалы отдельных мышечных волокон,

II – суммарный потенциал условной двигательной единицы.

Каждый мотонейрон связан с мышечными волокнами таким образом, что территория двигательной единицы в пространстве не изолируется от соседних ДЕ, а находится в одном объеме с ними. Такой принцип расположения ДЕ в мышце, когда в любой точке объема мышцы находятся мышечные волокна нескольких ДЕ, позволяет мышце сокращаться плавно, а не рывками, что было бы при разграничении разных ДЕ друг от друга в пространстве. ДЕ содержат разное количество мышечных волокон: от 10-20 в мелких мышцах, выполняющих точные и тонкие движения, до нескольких сот в крупных мышцах, выполняющих грубые движения и несущие антигравитационную нагрузку. К первой группе мышц можно отнести наружные мышцы глаза, ко второй мышцы бедра. Количество мышечных волокон, входящих в ДЕ, называют иннервационным числом.

По функциональным свойствам ДЕ бывают медленными и быстрыми. Медленные двигательные единицы иннервируются малыми альфа-мотонейронами, являются низкопороговыми, неутомляемыми, так как участвуют в тонических медленных движениях, обеспечивая антигравитационную функцию (поддержание позы). Быстрые ДЕ иннервируются большими альфа-мотонейронами, являются высокопороговыми, быстро утомляются, участвуют в быстрых (фазических) движениях. Во всех мышцах представлены как медленные, так и быстрые ДЕ, однако, в мышцах туловища, проксимальных отделов конечностей и камбаловидной мышце, участвующих в антигравитационной функции, преобладают медленные ДЕ, а в мышцах дистальных отделов конечностей, участвующих в выполнении точных произвольных движений, – быстрые ДЕ. Знание этих свойств ДЕ мышц важны при оценке работы мышцы в различных режимах произвольного напряжения. Игольчатая ЭМГ, которая производит оценку параметров одиночных двигательных единиц при минимальных усилиях, позволяет оценить в основном низкопороговые медленные ДЕ. Высокопороговые двигательные единицы, участвующие в фазических произвольных движениях, доступны для анализа только при максимальном произвольном усилии методом оценки интерференционного паттерна и анализа ПДЕ декомпозиционным методом. В исследовании уровня сегментарной возбудимости мотонейронов спинного мозга с помощью методики Н-рефлекса оценивают показатель возбудимости двух мышц голени: камбаловидной и икроножной. Камбаловидная является тонической мышцей, содержит больше медленных ДЕ, менее кортиколизована и отражает в большей степени регуляторные влияния со стороны спинного мозга. Икроножная мышца является фазической, больше содержит быстрых ДЕ, более кортиколизована и отражает регуляторные влияния со стороны головного мозга.

Двигательная единица группа мышечных волокон, иннервируемых одним мотонейроном.

Большой медицинский словарь . 2000 .

Смотреть что такое "двигательная единица" в других словарях:

    ДВИГАТЕЛЬНАЯ ЕДИНИЦА - Основная единица действия нервно мышечной системы; она включает отдельное эфферентное нервное волокно от отдельного моторного нейрона вместе с мышечным волокном, которое он ин нервирует … Толковый словарь по психологии

    Двигательная единица - – группа мышечных волокон, иннервируемая одним мотонейроном; нейромоторная единица … Словарь терминов по физиологии сельскохозяйственных животных

    Единица двигательная - Функциональная единица нейромоторного аппарата. Представляет собой периферический мотонейрон, его отростки и группу иннервируемых им мышечных волокон. При этом аксон мотонейрона, идущий к мышце, обеспечивающей тонкие движения, иннервируют по 5–12 … Энциклопедический словарь по психологии и педагогике

    Эта страница глоссарий. # А … Википедия

    ГОСТ Р 54828-2011: Комплектные распределительные устройства в металлической оболочке с элегазовой изоляцией (КРУЭ) на номинальные напряжения 110 кВ и выше. Общие технические условия - Терминология ГОСТ Р 54828 2011: Комплектные распределительные устройства в металлической оболочке с элегазовой изоляцией (КРУЭ) на номинальные напряжения 110 кВ и выше. Общие технические условия оригинал документа: 3.1.23 IP код (IP code):… …

    50.1.031-2001: Информационные технологии поддержки жизненного цикла продукции. Терминологический словарь. Часть 1. Стадии жизненного цикла продукции - Терминология 50.1.031 2001: Информационные технологии поддержки жизненного цикла продукции. Терминологический словарь. Часть 1. Стадии жизненного цикла продукции: 3.7.12. (всеобщее) управление качеством: Совокупность программных средств и данных … Словарь-справочник терминов нормативно-технической документации

    Р 50.1.031-2001: Информационные технологии поддержки жизненного цикла продукции. Терминологический словарь. Часть 1. Стадии жизненного цикла продукции - Терминология Р 50.1.031 2001: Информационные технологии поддержки жизненного цикла продукции. Терминологический словарь. Часть 1. Стадии жизненного цикла продукции: 3.7.12. (всеобщее) управление качеством: Совокупность программных средств и… … Словарь-справочник терминов нормативно-технической документации

    I Медицина Медицина система научных знаний и практической деятельности, целями которой являются укрепление и сохранение здоровья, продление жизни людей, предупреждение и лечение болезней человека. Для выполнения этих задач М. изучает строение и… … Медицинская энциклопедия

    ГОЛОВНОЙ МОЗГ - ГОЛОВНОЙ МОЗГ. Содержание: Методы изучения головного мозга..... . . 485 Филогенетическое и онтогенетическое развитие головного мозга............. 489 Bee головного мозга..............502 Анатомия головного мозга Макроскопическое и… … Большая медицинская энциклопедия

    I Грудной ребёнок ребенок в возрасте до одного года. Выделяют период новорожденности, продолжающийся 4 нед. после рождения (см. Новорожденный (Новорождённый)) и грудной возраст (от 4 нед. до 1 года). В грудном возрасте ребенок растет и… … Медицинская энциклопедия

Совокупность мотонейрона и иннервируемых им мышечных волокон называют двигательной (нейромоторной) единицей. Число мышечных волокон двигательной единицы варь­ирует в широких пределах в разных мышцах. Двигательные едини­цы невелики в мышцах, приспособленных для быстрых движений, от нескольких мышечных волокон до нескольких десятков их (мыш­цы пальцев, глаза, языка). Наоборот, в мышцах, осуществляющих медленные движения (поддержаниеттозы мышцами туловища), дви­гательные единицы велики и включают сотни и тысячи мышечных волокон.

При сокращении мышцы в натуральных (естественных) усло­виях можно зарегистрировать ее электрическую активность (элек-тромиограмму - ЭМГ) с помощью игольчатых или накожных элек­тродов. В абсолютно расслабленной мышце электрическая активность почти отсутствует. При небольшом напряжении, напри­мер при поддержании позы, двигательные единицы разряжаются с небольшой частотой (5-10 имп/с), при большом напряжении час­тота импульсации повышается в среднем до 20-30 имп/с. ЭМГ по­зволяет судить о функциональной способности нейромоторных еди­ниц. С функциональной точки зрения двигательные единицы разделяют на медленные и быстрые.

Медленные двигательные единицы включают медленные мотонейроны и медленные мышечные волокна (красные). Медлен­ные мотонейроны, как правило, низкопороговые, так как обычно это малые мотонейроны. Устойчивый уровень импульсации у мед­ленных мотонейронов наблюдается уже при очень слабых стати­ческих сокращениях мышц, при поддержании позы. Медленные мо­тонейроны способны поддерживать длительный разряд без заметного снижения частоты импульсации на протяжении длитель­ного времени. Поэтому их называют малоутомляемыми или не-утомляемыми мотонейронами. В окружении медленных мышеч­ных волокон богатая капиллярная сеть, позволяющая получать большое количество кислорода из крови. Повышенное содержание миоглобина облегчает транспорт кислорода в мышечных клетках к митохондриям. Миоглобин обусловливает красный цвет этих во­локон. Кроме того, волокна содержат большое количество митохон­дрий и субстратов окисления - жиров. Все это обусловливает ис­пользование медленными мышечными волокнами более эффективного аэробного окислительного пути энергопродукции и определяет их высокую выносливость.

Быстрые двигательные единицы состоят из быстрых мото­нейронов и быстрых мышечных волокон. Быстрые высокопорого­вые мотонейроны включаются в активность только для обеспече­ния относительно больших по силе статических и динамических сокращений мышц, а также в начале любых сокращений, чтобы увеличить скорость нарастания напряжения мышцы или сообщить движущейся части тела необходимое ускорение. Чем больше ско­рость и сила движений, т. е. чем больше мощность сократительно­го акта, тем больше участие быстрых двигательных единиц. Быст­рые мотонейроны относятся к утомляемым - они не способны к длительному поддержанию высокочастотного разряда.


Быстрые мышечные волокна (белые мышечные волокна) более толстые, содержат больше миофибрилл, обладают большей силой, чем медленные волокна. Эти волокна окружает меньше капилля­ров, в клетках меньше митохондрий, миоглобина и жиров. Актив­ность окислительных ферментов в быстрых волокнах ниже, чем в медленных, однако активность гликолитических ферментов, запа сы гликогена выше. Эти волокна не обладают большой выносливо­стью и более приспособлены для мощных, но относительно крат­ковременных сокращений. Активность быстрых волокон имеет зна­чение для выполнения кратковременной высокоинтенсивной работы, например бега на короткие дистанции.

Выделяют также тонические мышечные волокна, они имеют 7-10 синапсов, принадлежащих, как правило, нескольким мотонейронам. ПКП этих мышечных волокон не вызывает генера­цию ПД в них, а непосредственно запускает мышечное сокраще­ние.

Скорость сокращения мышечных волокон находится в прямой зависимости от активности миозин-АТФ-азы - фермента, расщеп­ляющего АТФ и тем самым способствующего образованию попе­речных мостиков и взаимодействию актиновых и миозиновых мио-филаментов. Более высокая активность этого фермента в быстрых мышечных волокнах обеспечивает и более высокую скорость их сокращения по сравнению с медленными волокнами.

Быстрые

Медленные

Нейрон

Крупные мотонейроны

Мелкие мотонейроны

Возбудимость меньше

Возбудимость больше

Диаметр аксона больше

Диаметр аксона меньше

Скорость проведения возбуждения больше

Скорость проведения возбуждения меньше

Частота больше

Частота меньше

Мышечные волокна

Активность актомиозиновой АТФазы выше

Активность актомиозиновой АТФазы меньше

Плотность упаковки актомиозиновых филаментов выше

Плотность упаковки актомиозиновых филаментов меньше

Более выражен саркоплазматический ретикулум (депо кальция)

Менее выражен саркоплазматический ретикулум (депо кальция)

Латентный период после поступления ПД меньше

Латентный период после поступления ПД больше

Плотность кальциевой помпы выше

Плотность кальциевой помпы меньше

Быстрее сокращается и расслабляется

Медленнее сокращается и расслабляется

Выше активность ферментов гликолиза

Выше активность ферментов окисления

Быстрее восстановление АТФ

Восстановление АТФ медленнее, но экономичнее

1 моль глюкозы –2-3 молей АТФ

1 моль глюкозы 36-58 молей АТФ

Образуются недоокисленные субстраты, «закисление» - быстрое утомление

утомление менее выражено

Большая плотность капилляров – больше оксигенация, больше миоглобина

Двигательная единица

Менее возбудима, большая сила и скорость сокращения, большая утомляемость, низкая выносливость

Более возбудима, меньшая сила, скорость сокращения, малая утомляемость, высокая выносливость

спринтеры

В наружной мышце бедра медленные волокна от 13 до 96 %

Трехглавая мышца плеча 33%, двуглавая 49%, передняя большеберцовая 46%, камбаловидная 84 %

Нейрофизиологические основы метода электромиографии.

Электромиография - этот метод исследования нервно-мышечной системы посредством регистрации электрических потенциалов мышц. Хотя впервые электромиограмма (ЭМГ) была зарегистрирована с помощью телефонного устройства Н. Е. Введенским еще в 1884 г., а в 1907 г. удалось осуществить графическую запись ЭМГ человека, интенсивное развитие электромиографии в качестве клинической диагностической методики началось в 30-40-е годы XX столетия Определенная задержка прогресса в этой области по сравнению, например, с развитием электроэнцефалографии, объясняется высокими требованиями к качеству регистрации и точности воспроизведения истинных параметров электрических потенциалов в электромиографии. Создание высококачественных усилителей, дающих линейные характеристики в диапазоне высоких частот, и разработка методов катодной регистрации, обеспечивающей неискаженное воспроизведение высокочастотных составляющих электрического потенциала до диапазона 20000 Гц, привели к существенному прогрессу в области клинического применения электромиографии

При внутриклеточной регистрации потенциал действия выглядит как положительный пик, состоящий из быстрой деполяризации, длящейся около 1 мс, быстрой реполяризации, представляющей собой возвращение потенциала почти до уровня покоя, длящейся около 2 мс; затем следуют медленная реполяризация, небольшая следовая гиперполяризация и возврат потенциала к уровню покоя. В клинической электромиографии при внеклеточной регистрации макроэлектродом потенциал действия мышечного волокна представлен негативным пиком длительностью 1-3 мс.

Техника отведения и регистрации ЭМГ

Принципы техники отведения и регистрации ЭМГ не отличаются от техники электроэнцефалографии, электрокардиографии и других электрографических методов. Система состоит из электродов, отводящих потенциалы мышцы, усилителя этих потенциалов и регистрирующего устройства. В электромиографии используется два вида электродов - поверхностные и игольчатые. Поверхностные электроды представляют собой металлические пластины или диски площадью около 0,2 - 1 см 2 , обычно вмонтированные попарно в фиксирующие колодки, обеспечивающие постоянство расстояний между отводящими электродами, что важно для оценки амплитуды регистрируемой активности. Такие электроды накладывают на кожу над областью двигательной точки мышцы. Кожу перед наложением электрода протирают спиртом и смачивают изотоническим раствором хлорида натрия. Электрод фиксируют над мышцей с помощью резиновых полос, манжет или лейкопластыря. При необходимости длительного исследования на область кожно-электродного контакта наносят специальную электродную пасту, используемую в электроэнцефалографии. Большой размер и удаленность от мышечной ткани поверхностного электрода позволяют регистрировать с его помощью только суммарную активность мышц, представляющую собой интерференцию потенциалов действия многих сотен и даже тысяч мышечных волокон. При больших усилениях и сильных мышечных сокращениях поверхностный электрод регистрирует также активность соседних мышц. Все это не позволяет исследовать с помощью поверхностных электродов параметры отдельных мышечных потенциалов. В получаемой регистрации только ориентировочно оценивают частоту, периодичность и амплитуду ЭМГ. Преимущество поверхностных электродов являются атравматичность, отсутствие риска инфекции, простота обращения с электродами. Безболезненность исследования не налагает ограничений на количество исследуемых за один раз мышц, делает этот метод предпочтительным при обследовании детей, а также при физиологическом контроле в спортивной медицине или при исследовании с применением массивных и сильных движений.

Игольчатые электроды бывают концентрическими, биполярными и монополярными. В первом варианте электрод представлен полой иглой диаметром около 0,5 мм внутри которой проходит отделенный от нее слоем изоляции проволочный стержень из платины или нержавеющей стали. Разность потенциалов измеряют между корпусом иглы и кончиком центрального стержня. Иногда для увеличения локальности отведения иглу изолируют также снаружи, причем неизолированной оставляют только ее эллиптическую поверхность по плоскости среза. Площадь отводящей поверхности осевого стержня стандартного концентрического электрода составляет 0,07 мм 2 Приводимые в современных публикациях параметры потенциалов ЭМГ относятся к электродам этого типа и размера. При существенном увеличении площади контакта отводящего электрода параметры потенциалов могут существенно меняться. Это же относится к изменениям конструкции электрода (биполярный, монополярный, мультиэлектрод). Биполярный электрод содержит внутри иглы два одинаковых изолированных друг от друга стержня, между обнаженными кончиками, которых, отстоящими друг от друга на десятые доли миллиметра, измеряют разность потенциалов. Наконец, для монополярных отведений используют электроды, представляющие собой иглу, изолированную на всем протяжении, кроме заостренного конца, оголенного на протяжении 1-2 мм. Игольчатые электроды используют для исследования параметров ПД отдельных ДЕ и мышечных волокон. Отведение игольчатым электродом является основным в клинической миографии, ориентированной на диагностику первично-мышечных и нервно-мышечных заболеваний. Запись отдельных ПД в ДЕ и мышечных волокон позволяет точно оценить длительность, амплитуду, форму и фазность потенциала

Виды отведений

Независимо от типа электродов различают два способа отведения электрической активности - моно- и биполярный. В электромиографии монополярным называется такое отведение, когда один электрод располагается непосредственно вблизи исследуемого участка мышц, а второй - в удаленной от него области (кожа над костью, мочка уха и др.). Преимуществом монополярного отведения является возможность определить форму потенциала исследуемой структуры и истинную фазу отклонения потенциала. Недостаток заключается в том, что при большом расстоянии между электродами в запись вмешиваются потенциалы от других отделов мышцы или даже от других мышц. Биполярное отведение - это такое отведение, при котором оба электрода находятся на достаточно близком и одинаковом расстоянии от исследуемой области мышцы. Таковым является отведение с помощью биполярных или концентрических игольчатых электродов и с помощью пары поверхностных электродов, зафиксированных в одной колодке. Биполярное отведение в малой степени регистрирует активность от отдаленных источников потенциала, особенно при использовании игольчатых электродов. Влияние на разность потенциалов активности, поступающей от источника на оба электрода, приводит к искажению формы потенциала и невозможности определить истинную фазу потенциала. Тем не менее высокая степень локальности делает этот способ предпочтительным в клинической практике. Поскольку отведение поверхностными электродами в любом случае регистрирует интерференционную активность многих взаимоналагающихся ПД ДЕ, использование такого монополярного отведения не имеет смысла.

Кроме электродов, разность потенциалов которых подается на вход усилителя ЭМГ, на кожу исследуемого устанавливают поверхностный электрод заземления, который присоединяют к соответствующей клемме на электродной панели электромиографа. Разность потенциалов от электродов подается на вход усилителя напряжения. Усилитель снабжен ступенчатым переключателем коэффициента усиления, позволяющим регулировать уровень усиления в зависимости от амплитуды регистрируемой активности. Усиленную электрическую активность выводят не только на осциллоскоп, но и на громкоговоритель, что позволяет оценивать электрические потенциалы на слух

Общие принципы анализа ЭМГ и электромиографическая семиотика.

Анализ электромиографической кривой включает на первом этапе дифференциацию собственно электрических потенциалов мышц от возможных артефактов и затем, на основном этапе, оценку собственно ЭМГ. Предварительная оперативная оценка осуществляется по экрану осциллографа и акустическим феноменам, возникающим при выводе усиленной ЭМГ на громкоговоритель; окончательный анализ с количественной характеристикой ЭМГ и клиническим заключением производят по записи на бумаге или кинопленке.

Артефактными потенциалами в ЭМГ называются потенциалы, не связанные собственно с активностью мышечных элементов. При поверхностном отведении артефакты могут обусловливаться движением электрода вследствие его неплотной фиксации на коже, что приводит к появлению высокоамплитудных скачков потенциала неправильной формы. При игольчатом отведении аналогичные изменения потенциала могут возникать при прикосновении к электроду, соединительным проводам, при массивных движениях исследуемой мышцы. Наиболее часто встречающимся видом помехи является наводка 50 Гц от устройств эксплуатации промышленного тока. Она легко распознается по характерной синусоидальной форме и постоянной частоте и амплитуде. Возникновение ее может быть связано с большим электродным сопротивлением, что требует соответствующей обработки игольчатого электрода. При поверхностных электродах устранение наводки может быть достигнуто более тщательной очисткой кожи спиртом, использованием электродной пасты.

Анализ ЭМГ включает оценку формы, амплитуды и длительности потенциалов действия отдельных мышечных волокон и ДЕ и характеристику интерференционной активности, возникающей при произвольном мышечном сокращении. Форма отдельного колебания мышечного потенциала может быть моно-, ди-. три- или полифазной. Как и в электроэнцефалографии, монофазным называется такое колебание, при котором кривая совершает отклонение в одну сторону от изоэлектрической линии и возвращается к исходному уровню. Дифазным называется колебание, при котором кривая по совершении отклонения в одну сторону от изоэлектрической линии пересекает ее и совершает колебание в противоположной фазе; трехфазное колебание совершает соответственно три отклонения в противоположные стороны от изоэлектрической линии. Полифазным называется колебание, содержащее четыре и более фаз.

Стимуляционные методы в электромиографии

Кроме исследования электрической активности мышц в покое, при рефлекторных и произвольных сокращениях, современная комплексная методика клинической электромиографии включает исследование электрических реакций нервов и мышц на электрическую стимуляцию. Аппаратура и способы регистрации вызванной стимуляцией электрической активности те же, что и в обычной электромиографии. Для стимуляции нервов и мышц используют электростимуляторы. Стимуляцию мышц производят накожными электродами в двигательных точках, стимуляцию нервов согласно зонам их проекции на кожу. Стимулирующие электроды изготавливают в виде металлических дисков диаметром 6-8 мм, вмонтированных в металлическую обойму и смачиваемых изотоническим раствором хлорида натрия. Стимуляционные методы в диагностике нервно-мышечных заболеваний решают следующие основные задачи: 1) исследование прямой возбудимости мышц; 2) исследование нервно-мышечной передачи; 3) исследование состояния мотонейронов и их аксонов; 4) исследование состояния чувствительных волокон периферических нервов. С помощью электромиографии можно выявить, связано ли изменение электрической активности с поражением мотонейрона или синаптических и надсег-ментарных структур.

Электромиографические данные широко используются для уточнения топического диагноза и объективизации патологических или восстановительных процессов. Высокая чувствительность этого метода, позволяющая выявлять субклинические поражения нервной системы, делает его особенно ценным. Электромиография широко применяется не только в неврологической практике, но и при изучении поражения других систем, когда возникают вторично обусловленные нарушения двигательной функции (сердечно-сосудистые, обменные, эндокринные заболевания).

При произвольном расслаблении мышц улавливаются только очень слабые (до 10-15 мкВ) и частые колебания биопотенциала. Рефлекторные изменения мышечного тонуса характеризуются незначительным увеличением амплитуд частых, быстрых и изменчивых по ритму колебаний биопотенциалов (до 50 мкВ). При произвольных сокращениях мышц регистрируются интерференционные электромиограммы (с частыми высоковольтными биопотенциалами до 2000 мкВ).

Поражение клеток переднего рога спинного мозга вызывает изменение ЭМГ в зависимости от тяжести повреждения, характера течения заболевания и стадии его. При парезе наблюдаются уреженные, ритмические колебания с увеличением продолжительности до 15-20 мс. Поражение переднего корешка или периферического нерва вызывает снижение амплитуды и частоты биопотенциалов, изменение формы ЭМГ-кривой. Вялый паралич проявляется “биоэлектрическим молчанием”.

ЭМГ одной из мышц руки человека в норме. . Электромиограмма при поражении передних рогов спинного мозга.

Вопросы для самостоятельной внеаудиторной работы студентов:

    Состав двигательной единицы. Понятие моторного пула.

    Классификация двигательных единиц.

    Сравнительная характеристика быстрых и медленных двигательных единиц.

    Регуляция силы сокращения целостной мышцы. Принципы «вовлечения» двигательных единиц, фракционирования моторного пула, общего конечного пути.

    Метод электромиографии, принцип метода, медицинское значение метода ЭМГ.

    В тетради практических работ подготовить краткую характеристику метода ЭМГ (принцип метода, необходимая аппаратура, виды электродов и особенности их применения, медицинское значение метода).

В. СТРОЕНИЕ И ФУНКЦИЯ МЫШЦ

Чтобы понять природу миофасциальных триггерных точек, необходимо понимать некоторые базисные аспекты строения и функции лечения, которые обычно не являются предметом пристального внимания. Кроме материала, представленного здесь, некоторые детали более подробно обсуждаются в работе Mense и Simons .

Строение мышц и механизм мышечных сокращений

Поперечнополосатая (скелетная) мышца — это совокупность отдельных пучков, каждый из которых насчитывает до 100 мышечных волокон (рис. 2.5, верхняя часть). В большинстве скелетных мышц каждое мышечное волокно (мышечная клетка) состоит из 1000-2000 миофибрилл. Каждая миофибрилла состоит из цепи саркомеров, последовательно соединённых «конец в конец» Основная сократительная (контрактильная) единица скелетной мышцы — это не что иное, как саркомер. Саркомеры соединены друг с другом с помощью Z-линий (или пучков), подобно связующему звену в цепях. С другой стороны, каждый саркомер содержит множество филаментов, состоящих из молекул актина и миозина, в результате взаимодействия которых и образуется сократительная (контрактильная) сила.

В средней части рис. 2.5 показана длина саркомера в состоянии покоя мышцы вместе с полным перекрытием актиновых и миозиновых филаментов (максимальная сократительная сила). Во время максимального укорочения молекулы миозина устанавливаются напротив линии «Z», блокирующей будущее сокращение (не показано). В нижней части рис. 2.5 показано почти полное растяжение саркомера с неполным перекрыванием молекул актина и миозина (сниженная контрактильная сила).

Миозиновые головки миозинового филамента представляют собой определённую форму аденозинтрифосфата АТФ, которая сокращается и взаимодействует с актином, чтобы вызвать сократительную силу. Эти контакты можно наблюдать с помощью электронной микроскопии как перекрёстные мостики, расположенные между актиновыми и миозиновыми филаментами. Ионизированный кальций запускает взаимодействие между филаментами, а АТФ обеспечивает энергию. АТФ освобождает миозиновые головки от актина после одного мощного «удара» и немедленно «поднимает» его для другого цикла. Во время этого процесса АТФ превращается в аденозиндифосфат (АДФ). Ионы кальция немедленно запускают следующий цикл. Множество таких сильных «ударов» необходимо для осуществления гребневого движения, в котором задействуется множество миозиновых головок от множества филаментов, чтобы произвести одно судорожное сокращение.

В присутствии кальция и АТФ актин и миозин продолжают взаимодействовать, при этом затрагивается энергия и используется сила, чтобы сократить саркомер. Такое взаимодействие актина и миозина, в результате которого продуцируется напряжение и потребляется энергия, не может происходить, если саркомеры удлинены (мышца растянута), пока сохраняется перекрытие между актиновыми и миозиновыми головками. Это изображено в нижней части рис. 2.5, где актиновые филаменты располагаются вне пределов досягаемости половины миозиновых головок (перекрёстные мостики).

Сила сокращения, которую какому-либо саркомеру может обеспечивать напряжение при активации, зависит от его фактической длины. Сократительная сила снижается очень быстро, когда саркомер достигает максимума или минимума длины (полное растягивание или полное укорочение). Поэтому каждый саркомер мышцы может генерировать максимальную силу только в промежуточном диапазоне своей длины , но он может затрачивать энергию в состоянии полного укорочения, стараясь укоротиться ещё больше.

Рис 2.6. Схематическое изображение одного саркомера (продольный срез), а также триады и саркоплазматического ретикулума (поперечный срез) (см. рис. 2.5 для ориентации). Саркоплазматический ретикулум человека состоит из трубчатой сети, которая окружает миофибриллы в мышечном волокне скелетной мышцы. Он представляет собой своеобразный резервуар кальция, который в норме высвобождается под действием пиковых потенциалов, распространяющихся вдоль поверхности мышечной клетки (сарколемма) и вдоль Т-образных трубочек (светлые круги), которые представляют собой инвагинацию сарколеммной мембраны. Изображение внизу схематически представляет один саркомер (функциональная единица скелетной мышцы), который распространяется от одной Z-линии до следующей Z-линии. Эта Z-линия находится там, где саркомеры объединяются, чтобы образовать цепь сплетающихся звеньев.

А-пучок — это область, занятая молекулами миозина (структуры, подобные щёткам), и отростками миозиновых головок.

I-пучок включает центральную Z-линию, где молекулярные филаменты актина (тонкие линии) прикрепляются к Z-линии, а I-пучок состоит из наибольшего числа филаментов. когда они свободны от перекрестных миозиновых мостиков.

М-линия образуется перекрыванием хвостиков молекулы миозина, головки которых расположены в разные стороны от М-линии.

Одна триада (две терминальные цистерны и одна Т-трубочка видны в красном квадрате) более детально показана на верхней части рисунка. Деполяризация (которая вызывается распространением типовых потенциалов вдоль Т-трубочки) передаётся через молекулярную платформу, чтобы индуцировать высвобождение кальция (красные стрелки) из саркоплазматического ретикулума. Кальций (красные точки) взаимодействует с сократительными элементами, чтобы индуцировать сократительную активность, которая продолжается до тех пор, пока кальций отсасывается внутрь саркоплазматического ретикулума или не истощатся запасы АТФ.

В норме кальций секвестрируется в канальцевой сети capкоплазматического ретикулума (см. рис. 2.5, верхняя часть; рис. 2.6), окружающего каждую миофибриллу. Кальций высвобождается из саркоплазматического ретикулума, окружающего каждую миофибриллу, когда распространяющийся потенциал действия достигает его с поверхности клеток через «Т»-канальцы (см. рис. 2.6). В норме после высвобождения свободный кальций быстро засасывается обратно в саркоплазматический ретикулум. В отсутствие свободного кальция сократительная активность саркомеров прекращается. При отсутствии АТФ миозиновые головки остаются прочно сцепленными, а мышца становится туго напряженной, как при трупном окоченении.

Хорошо иллюстрированное, более подробное описание всего сократительного механизма приведено в работе Aidley .

Двигательная единица — это конечный путь, по которому центральная нервная система контролирует произвольную активность мышцы. На рис. 2.7 схематически проиллюстрированы двигательная единица, которая состоит из клеточного тела α-мотонейрона переднего рога спинного мозга, его аксона (который проходит но спинномозговому, а затем — по двигательному нерву, входя в мышцу, где он разветвляется на множество мышечных ветвей), и многочисленные концевые двигательные пластинки, где каждая нервная веточка заканчивается на единственном мышечном волокне (т.е. клетке). Двигательная единица включает все мышечные волокна, иннервируемые одним мотонейроном. Любое мышечное волокно в норме получает нервное обеспечение только из одной концевой двигательной пластинки и потому только из одного мотонейрона. Мотонейрон определяет волокнистый тип всех мышечных волокон, которые он обеспечивает. В постуральных мышцах и мышцах конечностей одна двигательная единица обеспечивает от 300 до 1500 мышечных волокон. Чем меньше число волокон, которые контролируются индивидуальными мотонейронами мышц (более мелкие двигательные единицы), тем лучше двигательный контроль в этой мышце.

Рис. 2.7. Схематическое изображение двигательной единицы. Двигательная единица состоит из тела мотонейрона, его аксона с древовидными отростками и мышечных волокон, иннервируемых этим мотонейроном (обычно около 500). В скелетных мышцах человека каждое древовидное окончание заканчивается на уровне одной двигательной пластинки (тёмно-красный круг). Приблизительно 10 двигательных единиц переплетается в любом месте так, что один аксон посылает одну ветвь примерно каждому десятому мышечному волокну.

Когда тело клетки мотонейрона переднего рога спинного мозга начинает вырабатывать потенциал действия, этот потенциал передаётся вдоль нервного волокна (аксон) через каждое его древовидное разветвление специализированному нервному окончанию, которое участвует в формировании нейромышечного соединения (концевая двигательная пластинка) на каждом мышечном волокне. По прибытии к нервному окончанию электрический потенциал действия передаётся через синаптическую щель нервно-мышечного соединения в постсинаптическую мембрану мышечного волокна. Здесь «сообщение» снова становится потенциалом действия, который распространяется в обоих направлениях до концов мышечного волокна, вызывая тем самым его сокращение. При почти синхронном «включении» всех мышечных волокон, иннервируемых одним мотонейроном, вырабатывается потенциал действия двигательной единицы.

Одна такая двигательная единица в мышцах конечностей человека обычно ограничивается участком диаметром 5-10 мм . Диаметр одной двигательной единицы, расположенной в двуглавой мышце плеча, может варьироваться от 2 до 15 мм. Это даёт возможность переплетения волокон от 15-30 двигательных единиц.

ЭМГ-исследования и изучение интенсивности расщепления гликогена показывают, что плотность мышечных волокон, обеспечиваемых одним нейроном, намного выше в центре территории, определяемой двигательной единицей, чем по её периферии .

Два недавно проведённых исследования диаметра двигательных единиц жевательной мышцы показали, что средние величины составляют 8,8 ± 3,4 мм и 3,7 ± 2,3 мм ; в последнем случае диапазон величины двигательной единицы колебался от 0,4 до 13,1 мм. Подробный трёхразмерный анализ распределения волокон в пяти двигательных единицах передней большеберцовой мышцы кошек выявил заметные вариации в диаметре по всей длине двигательной единицы .

Таким образом, размер уплотнённого мышечного пучка, если он образован только одной двигательной единицей, может в значительной степени варьироваться и более или менее чётко очерчивать границы в однородной плотности мышечных волокон, расположенных внутри такой моторной единицы. Сходная вариабельность может быть следствием вовлечения отдельно взятых мышечных волокон нескольких переплетённых двигательных единиц.

Двигательная пластинка представляет собой функционально-анатомическую структуру, обеспечивающую связь окончания нервного волокна мотонейрона с мышечным волокном непосредственно. Она состоит из синапса, где электрический сигнал, исходящий из нервного волокна, изменяется на химический мессенджер (ацетилхолин), который в свою очередь вызывает другой электрический сигнал в клеточной мембране (сарколемма) мышечного волокна.

Зона концевой двигательной пластинки является территорией, где происходит иннервация мышечных волокон. В настоящее время этот район называют двигательной точкой . Клинически каждая двигательная точка определяется областью, где видимые или пальпируемые мышцы дают локальную судорожную реакцию в ответ на минимальное поверхностное раздражение электричеством (стимуляция). Первоначально двигательную точку ошибочно представляли как зону вхождения нерва в мышцы .

Местоположение концевых двигательных пластинок

Точное представление о местоположении концевых двигательных пластинок крайне важно для постановки правильного клинического диагноза и лечения миофасциальных триггерных точек. Если, как это часто бывает у больного, патофизиология триггерных точек тесно ассоциируется с концевыми пластинками, можно ожидать, что миофасциальные триггерные точки располагаются только там, где находятся концевые двигательные пластинки. Почти во всех скелетных мышцах концевые двигательные пластинки располагаются почти по середине каждого волокна, т. е. на середине расстояния между точками их прикрепления. Этот принцип, характеризующий мышцы человека, представлен схематически Coёrs и Woolf , одними из первых исследовавших концевые двигательные пластинки (рис. 2.8). Aquilonius и соавт. представили результаты подробного анализа местонахождения концевых двигательных пластинок двуглавой мышцы и плеча, передней большеберцовой и портняжной мышц взрослого человека.

Christensen описал распределение срединных концевых двигательных пластинок у мертворожденного в следующих мышцах: мышце, противопоставляющей большой палец, плечелучевой, полусухожильной (два поперечных пучка концевых пластинок), двуглавой мышце плеча, тонкой (два определённых типа уплотнения мышечного волокна внутри каждой двигательной единицы), портняжной (разбросанные концевые пластинки), трёхглавой мышце плеча, икроножной, передней большеберцовой, мышце, противопоставляющей V палец кисти, прямой мышце бедра, коротком разгибателе пальцев стоп, перстнещитовидной и дельтовидной.

Рис. 2.8. Расположение концевых двигательных пластинок в скелетных мышцах различной структуры.
Красные линии представляют мышечные волокна;
чёрные точки показывают концевые двигательные пластинки этих волокон,
а чёрные линии обозначают прикрепление волокон к апоневрозу.
Концевые двигательные пластинки обнаруживаются в средней части каждого мышечного волокна.

а — линейные концевые двигательные пластинки, находящиеся в мышце с короткими волокнами, расположенные между параллельными апоневрозами, как это наблюдается в икроножной мышце;
б — петлеобразное расположение концевых пластинок в двуперистой мышце (например, m.flexor carpi radialis и m.patmaris longus;
в — синусоидное расположение концевых пластинок в мышечных волокнах средней части дельтовидной мышцы, характеризующихся сложной перистой конфигурацией. (Из Coёrs С. Contribution а létude de la jonction neuromusculaire. II Topographie zonale de l"innervation motrice terminale dans les muscles striés. Arch. Biol. Paris 64, 495-505, 1953 , адаптировано с разрешения.)

Как было сказано выше, принцип используется вне зависимости от строения мышечных волокон. Для этой цели важно знать, как расположены мышечные волокна: это поможет понять, как расположены концевые пластинки внутри каждой мышцы и, следовательно, определить место, где следует искать триггерные точки.

В мышце волокна могут располагаться следующим образом: параллельно, параллельно с сухожильными вставками, веретенообразно, веретенообразно с двумя брюшками. Мышцы также могут быть одноперистыми, двуперистыми, многоперистыми, обладать спиральным расположением волокон (рис. 2.9).

Рис. 2.9. Параллельное и веретенообразное расположение мышечных волокон обеспечивает большее изменение длины при затрате силы. Перистое строение обеспечивает большую силу при издержках в длине. Обратите внимание на то, что расположение мышечных волокон в каждой отдельной мышце обеспечивает почти равную длину всех составляющих её мышечных волокон.

На рис. 2.8 можно видеть расположение концевых двигательных пластинок в мышцах разной формы. (Из Clemente С. D. Gray"s Anatomy of the Human Body. 30th ed. Philadelphia: Lea & Fibiger, 1985, 429, с разрешения, адаптировано)

Рис. 2.10. Микрофотографии и рисунки, показывающие расположение концевых пластинок в скелетных мышцах мыши (по результатам исследования Schwarzacher, использовавшего окрашивание на холинэстеразу по Koelle в модификации Соёrs, чтобы показать концевые двигательные пластинки .

На схемах, выполненных с использованием компьютера (в, д, е),
красные линии означают мышечные волокна;
чёрными точками представлены концевые двигательные пластинки этих мышечных волокон,
а чёрные линии изображают прикрепления мышечных волокон либо непосредственно к кости, либо к апоневрозу.
а — микрофотография,
б — опубликованный схематический рисунок, выполненный с M.gracillis posterior;
в — компьютерная версия рис. б для сравнения. Видно два скопления концевых пластинок;
г — микрофотография диафрагмы, видна зона концевых пластинок, проходящая между концами мышечных волокон;
д — схематическое изображение расположения концевых пластинок в полусухожильной мышце;
е — в большой ягодичной мышце. (Из Schwarzacher V. H. Zurlage der motorischen endplallen in den skeletmuskeln. Acta Anat 30, 758-774, 1957, с разрешения. Схематические изображения получены из этого же источника.)

Рис. 2.11. Схематическое изображение двух концевых двигательных пластинок млекопитающих и нервно-сосудистых пучков, ассоциированных с ними.

Нервные окончания двигательного аксона закрываются внутри компактного мионеврального соединения, погружённого внутрь слегка приподнятой области концевой пластинки в мышечном волокне.

Волокна двигательного нерва сопровождают чувствительные нервные волокна и кровеносные сосуды.

Вегетативные нервы находятся в тесной взаимосвязи с этими мелкими кровеносными сосудами, расположенными в мышечной ткани.

Пиковые потенциалы, зарегистрированные на уровне области концевой пластинки мышечного волокна, показывают отрицательное первоначальное угасание.

На очень небольшом расстоянии в обе стороны от концевом пластинки, справа, пиковые потенциалы этого волокна обладают положительным первоначальным угасанием.

Это один из путей, с помощью которого осуществляется электромиографический поиск концевых двигательных пластинок. Конфигурация пиковых потенциалов внизу рисунка соответствует форме волны, которая могла бы регистрироваться в разных местах вдоль передней плоскости мышечного волокна. (Из рис.5 Salpeter М.М. Vertebral neuromuscular junctions: General morphology, molecular organization, and functional consequences. In: Salpeter M. M., Ed. The Vertebrate Neuromuscular Junction. New York: Alan R. Liss, Inc. 1987: 1-54 , с разрешения, адаптировано.)

Среди скелетных мышц имеется по крайней мере четыре рода исключений из правила, что концевая пластинка может располагаться только в середине брюшка мышцы.

1. В некоторых мышцах человека, включая мышцу живота, полуостистую мышцу головы и полусухожильную мышцу, есть перемычки, делящие мышцы на серию сегментов, каждый из которых обладает своей собственной зоной расположения концевых пластинок, что показано на примере мышц грызунов (рис. 2.10, а, б, в, д). Сравните с рис. 2.10, г, е, иллюстрирующими обычное построение элементов концевой пластинки.

2. В портняжной мышце человека концевые двигательные пластинки разбросаны по всей мышце. Эти концевые пластинки обеспечивают параллельные пучки из укороченных волокон, которые могут переплетаться друг с другом по всей длине. При этом хорошо определяемой зоны концевых пластинок может и не быть . По мнению Christensen , нежная мышца человека обладает двумя поперечно расположенными зонами, содержащими концевые пластинки, подобно полуперепончатой мышце, но к тому же снабжёнными переплетающимися волокнами с разбросанными концевыми пластинками, как у портняжной мышцы . Такая переплетающаяся конфигурация волокон необычна для скелетных мышц человека, а строение концевой пластинки в обеих указанных мышцах может различаться у разных индивидов.

3. Внутри мышцы наблюдается разделение на ячейки и отделы (компартментализация), причём, и это очень важно, каждая ячейка или футляр изолированы фасциальной оболочкой.

Отдельная веточка двигательного нерва иннервирует зону расположения каждой концевой двигательной пластинки или каждый футляр. Каждый такой анатомо-физиологический отдел обладает определённой функцией. В качестве примера можно привести проксимальную и дистальную части лучевого длинного разгибателя кисти и дистального лучевого сгибателя кисти.

Жевательная мышца также представляет собой наглядное свидетельство разделения на ячейки и футляры (компартментализация) двигательной единицы . С этой точки зрения изучено относительно небольшое число мышц человека, однако, вероятно, это общий признак мышц.

4. Икроножная мышца представляет собой особый пример аранжировки мышечных волокон, которые увеличивают мышечную силу путём уменьшения объёма подвижности. Волокна искривляются под значительным углом так, что одно мышечное волокно представляется минимальной долей от общей длины мышцы. Следовательно, зона концевой пластинки проходит центрально вниз по наибольшей длине каждого участка мышцы. Пример такого строения приведён на рис. 2.8 а.

На рис. 2.11 схематично изображены две концевые пластинки и маленький нейрососудистый пучок, который пересекает мышечные волокна в местах, где терминальные аксоны снабжают двигательные концевые пластинки . Линейное расположение концевых пластинок, которые идут по ходу нейрососудистого пучка, ориентировано поперёк направления мышечных волокон . Нейрососудистый пучок включает болевые рецепторы чувствительных нервов и вегетативные нервы, тесно связанные с сопровождающими их сосудами. Непосредственное соприкосновение этих структур с двигательными концевыми пластинками является исключительно важным для представления и понимания процесса происхождения боли и вегетативных феноменов, сочетанных с миофасциальными триггерными точками.

У разных видов топографическое расположение нервных окончаний на уровне концевых двигательных пластинок различное. Так, у лягушки обнаружили расширенные синаптические желобовидные канавки. У крыс и мышей желобовидные канавки бывают извитыми или свёрнутыми в виде спирали так, как это показано на рис. 2.11. На рис. 2.12 представлено расположение нервных окончаний у человека.

При окрашивании концевой пластинки на холинэст-разу (см. рис. 2.12, а) чётко видны более или менее отделённые друг от друга группы синаптических щелей. Благодаря достаточному разделению эта структура может эффективно функционировать в качестве многочисленных отдельных синапсов, которые могли бы отвечать за сложные серии пиковых потенциалов, исходящих из активного локуса, расположенного в мышечном волокне (см. раздел Г).

На рис. 2.12, б схематично представлено расположение концевых пластинок в мышечных волокнах у человека (поперечное сечение).


Рис. 2.12. Строение концевой двигательной пластинки. Микрофотография субневрального аппарата и схема поперечного разреза нервного окончания в мышце человека.
а — на микрофотографии области концевой пластинки человека, окрашенной по модифицированному методу Koelle для выявления присутствия холинэстеразы, видны многочисленные группы разрозненных (дискретных) синаптических щелей в субневральном аппарате.

Такое нервное окончание двигательного нерва одной концевой пластинки состоит из 11 отдельных округлых или овальных пар. Эта структурная форма отличается от извилистых и искривлённых, сетчатых окончаний, встречающихся у крыс и мышей. (Из Cёrs С. Structural organization of the motor nerve endings in mammalian muscle spindles and other striated muscle fibers. In: Bouman HD, Woolf AL, eds. Innervation of Muscle . Baltimore: Williams & Wilkins, 1960, 40-49, с разрешения ;

б — схема поперечного сечения через область концевой двигательной пластинки. На этом немиелинизированном нервном окончании видно шесть расширений (чёрные дольки). Каждое расширение имеет свою собственную синап-тическую канавку и систему из постсинаптических складок. Пунктирные линии представляют расширение шванновских клеток, прикреплённых сарколеммной мембраной мышечной клетки и изолирующих содержимое синаптической щели от внеклеточной среды.

Вертикальные параллельные линии означают испещрённость (Z-линии) мышечного волокна. (Из Coёrs С. Contribution а l"étude de la jonction neuromusculaire. Donnés nouvelles concernant la structure de l"arborosation terminale et de l"appareil sousneural chez l"homme. Arch. Biol. Paris 64, 133-147, 1953 , с разрешения.)


Рис. 2.13. Схема поперечного сечения части нейромышечного соединения, которое передаёт нервные потенциалы действия через синапсы путём химической передачи, после чего они становятся мышечным потенциалом действия. В ответ на распространение потенциала действия вниз по двигательному нерву синаптическая мембрана нервного окончания раскрывает «входные ворота» для прохождения электрического напряжения по кольцевым канальцам, делая возможным приток кальция из синаптической щели (маленькое направленные вверх красные стрелки). Кальций вызывает высвобождение многочисленных порций ацетилхолина внутри синаптической щели (большие направленные вниз стрелки).

Рецепторы, специфичные для ацетилхолина, деполяризуют постсинаптическую мембрану мышечного волокна в такой степени, чтобы открылись натриевые канальцы в глубине складок постсинаптической мембраны. Достаточная деполяризация этих натриевых канальцев инициирует распространение потенциала действия в мышечном волокне.

Нейромышечное соединение является синапсом, который, подобно многим другим структурам в центральной нервной системе, зависит от ацетилхолина в качестве нейротрансмиттера (передатчика).

Основная структура и функция нейромышечного соединения схематично представлены на рис. 2.13. Нервное окончание продуцирует ацетилхолин. При этом потребляется энергия, которую в достаточном количестве поставляют митохондрии, находящиеся в нервных окончаниях.

Нервное окончание реагирует на прибытие активного потенциала из α-мотонейрона путём раскрытия ионных кальциевых каналов. По этим каналам ионизированный кальций продвигается от синаптической щели внутрь нервного окончания. Эти канальцы располагаются по обеим сторонам специализированного участка нервной мембраны, из которой в норме в ответ на присутствие ионизированного кальция высвобождаются порции ацетилхолина.

Одновременное высвобождение множества порций ацетилхолина позволяет быстро преодолеть барьер холинэстеразы в синаптической щели. Большая часть ацетилхолина затем пересекает синаптическую щель, чтобы достичь перекреста складок постсинаптической мембраны мышечного волокна, где располагаются ацетилхолиновые рецепторы (см. рис. 2.13). Однако, вскоре холинэстераза разрушает остатки ацетилхолина, ограничивая время его действия. Теперь синапс становится способным немедленно отвечать на другой потенциал действия.

Нормальное произвольное высвобождение отдельных порций ацетилхолина из нервного окончания вырабатывает изолированные индивидуальные миниатюрные потенциалы концевых пластинок. Такие индивидуальные миниатюрные потенциалы концевых двигательных пластинок не распространяются и вскоре исчезают. С другой стороны, массовое высвобождение ацетилхолина из многочисленных пузырьков в ответ на потенциал действия, возникающий в нервном окончании, деполяризует постсинаптическую мембрану в достаточной мере, чтобы достичь порога его возбуждения. Это событие вызывает потенциал действия, который передаётся поверхностной мембраной (сарколемма) по мышечному волокну.

Вперёд:
Назад: